skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Yuguang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The kinematics of star-forming galaxy populations at high redshifts are integral to our understanding of disk properties, merger rates, and other defining characteristics. Nebular gas emission is a common tracer of galaxies’ gravitational potential and angular momenta, but is sensitive to nongravitational forces as well as galactic outflows, and thus might not accurately trace the host galaxy dynamics. We present kinematic maps of young stars from rest-ultraviolet photospheric absorption in the star-forming galaxy CASSOWARY 13 (a.k.a. SDSS J1237+5533) atz= 1.87 using the Keck Cosmic Web Imager, alongside nebular emission measurements from the same observations. Gravitational lensing magnification of the galaxy enables good spatial sampling of multiple independent lensed images. We find close agreement between the stellar and nebular velocity fields. We measure a mean local velocity dispersion ofσ = 64 ± 12 km s−1for the young stars, consistent with that of the Hiiregions traced by nebular Ciii] emission (52  ±  9 km s−1). The ∼20 km s−1average difference in line-of-sight velocity is much smaller than the local velocity width and the velocity gradient (≳100 km s−1). We find no evidence of asymmetric drift nor evidence that outflows bias the nebular kinematics, and thus we conclude that nebular emission appears to be a reasonable dynamical tracer of young stars in the galaxy. These results support the picture of star formation in thick disks with high velocity dispersion atz ∼ 2, and they represent an important step toward establishing robust kinematics of early galaxies using collisionless tracers. 
    more » « less
    Free, publicly-accessible full text available September 17, 2026
  2. Abstract Integral field spectroscopy (IFS) is a powerful tool for understanding the formation of galaxies across cosmic history. We present the observing strategy and first results of MSA-3D, a novel JWST program using multi-object spectroscopy in a slit-stepping strategy to produce IFS data cubes. The program observed 43 normal star-forming galaxies at redshifts 0.5 ≲z≲ 1.5, corresponding to the epoch when spiral thin-disk galaxies of the modern Hubble sequence are thought to emerge, obtaining kiloparsec-scale maps of rest-frame optical nebular emission lines with spectral resolutionR≃ 2700. Here we describe the multiplexed slit-stepping method, which is >15 times more efficient than the NIRSpec IFS mode for our program. As an example of the data quality, we present a case study of an individual galaxy atz= 1.104 (stellar massM*= 1010.3M, star formation rate, SFR = 3Myr−1) with prominent face-on spiral structure. We show that the galaxy exhibits a rotationally supported disk with moderate velocity dispersion ( σ = 3 6 4 + 5 km s−1), a negative radial metallicity gradient (−0.020 ± 0.002 dex kpc−1), a dust attenuation gradient, and an exponentially decreasing SFR density profile that closely matches the stellar continuum. These properties are characteristic of local spirals, indicating that mature galaxies are in place atz∼ 1. We also describe the customized data reduction and original cube-building software pipelines that we have developed to exploit the powerful slit-stepping technique. Our results demonstrate the ability of JWST slit-stepping to study galaxy populations at intermediate to high redshifts, with data quality similar to current surveys of thez∼ 0.1 Universe. 
    more » « less
    Free, publicly-accessible full text available April 15, 2026
  3. Abstract We present Keck Cosmic Web Imager integral-field unit observations around extended Lyαhalos of 27 typical star-forming galaxies with redshifts 2.0 <z< 3.2 drawn from the MOSFIRE Deep Evolution Field survey. We examine the average Lyαsurface brightness profiles in bins of star formation rate (SFR), stellar mass (M*), age, stellar continuum reddening, SFR surface density (ΣSFR), and ΣSFRnormalized by stellar mass (ΣsSFR). The scale lengths of the halos correlate with stellar mass, age, and stellar continuum reddening and anticorrelate with SFR, ΣSFR, and ΣsSFR. These results are consistent with a scenario in which the down-the-barrel fraction of Lyαemission is modulated by the low-column-density channels in the interstellar medium, and in which the neutral gas covering fraction is related to the physical properties of the galaxies. Specifically, we find that this covering fraction increases with stellar mass, age, andE(B−V) and decreases with SFR, ΣSFR, and ΣsSFR. We also find that the resonantly scattered Lyαemission suffers greater attenuation than the (nonresonant) stellar continuum emission, and that the difference in attenuation increases with stellar mass, age, and stellar continuum reddening, and decreases with ΣsSFR. These results imply that more reddened galaxies have more dust in their circumgalactic medium. 
    more » « less
  4. We study the spatially resolved outflow properties of CSWA13, an intermediate-mass (M* = 109M), gravitationally lensed star-forming galaxy atz= 1.87. We use Keck/KCWI to map outflows in multiple rest-frame UV interstellar medium (ISM) absorption lines, along with fluorescent Siii* emission, and nebular emission from Ciii] tracing the local systemic velocity. The spatial structure of the outflow velocity mirrors that of the nebular kinematics, which we interpret to be a signature of a young galactic wind that is pressurizing the ISM of the galaxy but is yet to burst out. From the radial extent of Siii* emission, we estimate that the outflow is largely encapsulated within 3.5 kpc. We explore the geometry (e.g., patchiness) of the outflow by measuring the covering fraction at different velocities, finding that the maximum covering fraction is at velocitiesv ≃ −150 km s−1. Using the outflow velocity (vout), radius (R), column density (N), and solid angle (Ω) based on the covering fraction, we measure the mass-loss rate log m ̇ out / ( M yr 1 ) = 1.73 ± 0.23 and mass loading factor log η = 0.04 ± 0.34 for the low-ionization outflowing gas in this galaxy. These values are relatively large and the bulk of the outflowing gas is moving with speeds less than the escape velocity of the galaxy halo, suggesting that the majority of the outflowing mass will remain in the circumgalactic medium and/or recycle back into the galaxy. The results support a picture of high outflow rates transporting mass and metals into the inner circumgalactic medium, providing the gas reservoir for future star formation. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  5. ABSTRACT The discovery of giant quasar Ly α nebulae at z > 2 has opened up the possibility to directly study in emission the Circumgalactic and Intergalactic Medium (CGM/IGM). However, the resonant nature of the Ly α line and its different emission mechanisms hamper the ability to constrain both the kinematics and physical properties of the CGM/IGM. Here, we present results of a pilot project aiming at the detection of CGM H α emission, a line which does not suffer from these limitations. To this end, we first used KCWI to detect Ly α emission around three bright quasars with 2.25 < z < 2.27, a range which is free from bright IR sky lines for H α, and then selected the most extended nebula for H α follow-up with MOSFIRE. Within the MOSFIRE slit, we detected H α emission extending up to 20 physical kpc with a total H α flux of FH α = (9.5 ± 0.9) × 10$$^{-18}~\mathrm{erg\, s^{-1}\, cm^{-2}}$$. Considering the Ly α flux in the same region, we found FLy α/FH α = 3.7 ± 0.3 consistent with that obtained for the Slug Nebula at z = 2.275 and with recombination radiation. This implies high densities or a very broad density distribution within the CGM of high-redshift quasars. Moreover, the H α line profile suggests the presence of multiple emitting components overlapping along our line of sight and relatively quiescent kinematics, which seems incompatible with either quasar outflows capable of escaping the potential well of the host halo or disc-like rotation in a massive halo (>1012 M⊙). 
    more » « less
  6. Abstract Dwarf galaxies located in extremely underdense cosmic voids are excellent test beds for disentangling the effects of large-scale environments on galaxy formation and evolution. We present the first results of the Dwarfs in Void Environments Survey, which has obtained integral field spectroscopy for low-mass galaxies (M= 107–109M) located inside (N= 21) and outside (N= 9) cosmic voids using the Keck Cosmic Web Imager. Using measurements of stellar line-of-sight rotational velocityvrotand velocity dispersionσ, we test the tidal stirring hypothesis, which posits that dwarf spheroidal galaxies are formed through tidal interactions with more massive host galaxies. We measure low values ofvrot≲ 2 for our sample of isolated dwarf galaxies, and we find no trend betweenvrotand the distance from a massive galaxy d L out to d L 10 Mpc. These suggest that dwarf galaxies can become dispersion-supported, “puffy” systems even in the absence of environmental effects like tidal interactions. We also find indications of an upward trend betweenvrotand galaxy stellar mass, perhaps implying that stellar disk formation depends on mass rather than environment. Although some of our conclusions may be slightly modified by systematic effects, our main result still holds: that isolated low-mass galaxies may form and remain as puffy systems rather than the dynamically cold disks predicted by classical galaxy formation theory. 
    more » « less
  7. ABSTRACT The connection between the escape fraction of ionizing radiation (fesc) and the properties of galaxies, such as stellar mass ($$\rm M_{\rm *}$$), age, star-formation rate (SFR), and dust content, are key inputs for reionization models, but many of these relationships remain untested at high redshift. We present an analysis of a sample of 96 $$z$$ ∼ 3 galaxies from the Keck Lyman Continuum Spectroscopic Survey (KLCS). These galaxies have both sensitive Keck/LRIS spectroscopic measurements of the Lyman continuum (LyC) region, and multiband photometry that places constraints on stellar population parameters. We construct composite spectra from subsamples binned as a function of galaxy property and quantify the ionizing-photon escape for each composite. We find a significant anti-correlation between fesc and $$\rm M_{\rm *}$$, consistent with predictions from cosmological zoom-in simulations. We also find significant anti-correlation between fesc and E(B−V), encoding the underlying physics of LyC escape in our sample. We also find no significant correlation between fesc and either stellar age or specific SFR (= SFR/$$\rm M_{\rm *}$$), challenging interpretations that synchronize recent star formation and favorable conditions for ionizing escape. The galaxy properties now shown to correlate with fesc in the KLCS are Lyα equivalent width, UV Luminosity, $$\rm M_{\rm *}$$, SFR, and E(B−V), but not age or sSFR. This comprehensive analysis of galaxy properties and LyC escape at high redshift will be used to guide future models and observations of the reionization epoch. 
    more » « less
  8. ABSTRACT The connection between the escape fraction of ionizing photons (fesc) and star formation rate surface density (ΣSFR) is a key input for reionization models, but remains untested at high redshift. We analyse 35 z ∼ 3 galaxies from the Keck Lyman Continuum Survey (KLCS) covered by deep, rest far-UV spectra of the Lyman continuum (LyC) and high-resolution HST V606 imaging, enabling estimates of both fesc and rest-UV sizes. Using Sérsic profile fits to HST images and spectral-energy distribution fits to multiband photometry, we measure effective sizes and SFRs for the galaxies in our sample, and separate the sample into two bins of ΣSFR. Based on composite spectra, we estimate 〈fesc〉 for both ΣSFR subsamples, finding no significant difference in 〈fesc〉 between the two. To test the representativeness of the KLCS HST sample and robustness of this result, we attempt to recover the well-established correlation between fesc and Lyα equivalent width. This correlation is not significant within the KLCS HST sample, indicating that the sample is insufficient for correlating fesc and galaxy properties such as ΣSFR. We perform stacking simulations using the KLCS parent sample to determine the optimal sample size for robust probes of the fesc-ΣSFR connection to inform future observing programs. For a program with a selection independent of ionizing properties, ≥90 objects are required; for one preferentially observing strongly-leaking LyC sources, ≥58 objects are required. More generally, measuring the connection between fesc and ΣSFR requires a larger, representative sample spanning a wide dynamic range in galaxies properties such as ΣSFR. 
    more » « less
  9. ABSTRACT We present new spectroscopic observations of Ly α (Ly α) Blob 2 (z ∼ 3.1). We observed extended Ly α emission in three distinct regions, where the highest Ly α surface brightness (SB) centre is far away from the known continuum sources. We searched through the MOSFIRE slits that cover the high Ly α SB regions, but were unable to detect any significant nebular emission near the highest SB centre. We further mapped the flux ratio of the blue peak to the red peak and found it is anticorrelated with Ly α SB with a power-law index of ∼ –0.4. We used radiative transfer models with both multiphase, clumpy, and shell geometries and successfully reproduced the diverse Ly α morphologies. We found that most spectra suggest outflow-dominated kinematics, while 4/15 spectra imply inflows. A significant correlation exists between parameter pairs, and the multiphase, clumpy model may alleviate previously reported discrepancies. We also modelled Ly α spectra at different positions simultaneously and found that the variation of the inferred clump outflow velocities can be approximately explained by line-of-sight projection effects. Our results support the ‘central powering  + scattering’ scenario, i.e. the Ly α photons are generated by a central powering source and then scatter with outflowing, multiphase H  i gas while propagating outwards. The infalling of cool gas near the blob outskirts shapes the observed blue-dominated Ly α profiles, but its energy contribution to the total Ly α luminosity is less than 10 per cent, i.e. minor compared to the photoionization by star-forming galaxies and/or AGNs. 
    more » « less